14.03.2024

Структура и параметры эффективности и качества функционирования смо. Оценка эффективности работы смо Чем определяется эффективность работы системы массового обслуживания


Во всех рассмотренных выше СМО предполагалось, что все запросы, поступающие в систему - однородные, то есть, они имеют один и тот же закон распределения времени обслуживания и обслуживаются в системе согласно общей дисциплины выбора из очереди. Однако, во многих реальных системах запросы, поступающие в систему, неоднородны как по распределению времени обслуживания, так и по их ценности для системы и, следовательно, праву претендовать на первоочередное обслуживание в момент освобождения прибора. Такие модели исследуются в рамках теории приоритетных СМО. Эта теория довольно хорошо развита и ее изложению посвящено немало монографий (см., например, , , , и т.д.). Здесь мы ограничимся кратким описанием приоритетных систем и рассмотрим одну систему.

Рассмотрим однолинейную СМО с ожиданием. На вход системы поступают независимых простейших потоков, поток имеет интенсивность . Будем обозначать

Времена обслуживания запросов из потока характеризуются функцией распределения с преобразованием Лапласа - Стилтьеса и конечными начальными моментами

Запросы из потока назовем запросами приоритета к.

Считаем, что запросы из потока более приоритетны, чем запросы из потока, если Приоритетность проявляется в том, что в момент окончания обслуживания следующим на обслуживание выбирается из очереди запрос, имеющий максимальный приоритет. Запросы, имеющие один и тот же приоритет, выбираются согласно установленной дисциплине обслуживания, например, согласно дисциплине FIFO.

Рассматриваются различные варианты поведения системы в ситуации, когда во время обслуживания запроса некоторого приоритета в систему поступает запрос более высокого приоритета.

Система называется СМО с относительным приоритетом, если поступление такого запроса не прерывает обслуживание запроса. Если же такое прерывание происходит, то система называется СМО с абсолютным приоритетом. В этом случае, однако, требуется уточнить дальнейшее поведение запроса, обслуживание которого оказалось прерванным. Различают следующие варианты: прерванный запрос уходит из системы и теряется; прерванный запрос возвращается в очередь и продолжает обслуживание с места прерывания после ухода из системы всех запросов, имеющих более высокий приоритет; прерванный запрос возвращается в очередь и начинает обслуживание заново после ухода из системы всех запросов, имеющих более высокий приоритет. Прерванный запрос обслуживается прибором после ухода из системы всех запросов, имеющих более высокий приоритет, в течение времени, имеющего прежнее или некоторое другое распределение. Возможен вариант, когда требуемое время обслуживания в последующих попытках идентично времени, которое требовалось для полного обслуживания данного запроса в первой попытке.

Таким образом, имеется достаточно большое число вариантов поведения системы с приоритетом, с которыми можно ознакомиться в вышеупомянутых книгах. Общим в анализе всех систем с приоритетами является использование понятия периода занятости системы запросами приоритета к и выше. При этом основным методом исследования этих систем является метод введения дополнительного события, кратко описанный в разделе 6.

Проиллюстрируем особенности нахождения характеристик систем с приоритетами на примере системы, описанной в начале раздела. Будем считать, что это система с относительным приоритетом и найдем стационарное распределения времени ожидания запроса приоритета если бы он поступил в систему в момент времени t (так называемого виртуального времени ожидания), для системы с относительными приоритетами.

Обозначим

Условием существования этих пределов является выполнение неравенства

где величина вычисляется по формуле:

Обозначим также .

Утверждение 21. Преобразование Лапласа - Стилтьеса стационарного распределения виртуального времени ожидания запроса приоритета к определяется следующим образом:

где функции задаются формулой:

а функции находятся как решения функциональных уравнений:

Доказательство. Заметим, что функция представляет собой преобразование Лапласа - Стилтьеса распределения длины периода занятости системы запросами приоритета I и выше (то есть, интервала времени с момента поступления в пустую систему запроса приоритета I и выше и до первого после этого момента, когда система окажется свободной от присутствия запросов приоритета I и выше). Доказательство того, что функция удовлетворяет уравнению (1.118), почти дословно повторяет доказательство Утверждения 13. Отметим лишь, что величина есть вероятность того, что период занятости системы запросами приоритета I и выше начинается с прихода запроса приоритета а величина трактуется как вероятность ненаступления катастрофы и запросов приоритета I и выше, за периоды занятости, порожденные которыми наступает катастрофа, за время обслуживания запроса приоритета , начавшего данный период занятости.

Сначала вместо процесса рассмотрим существенно более простой вспомогательный процесс - время, в течение которого ожидал бы начала обслуживания запрос приоритета к, если бы он поступил в систему в момент времени t и после этого в систему не поступало запросов более высокого приоритета.

Пусть - преобразование Лапласа - Стилтьеса распределения случайной величины . Покажем, что функция определяется следующим образом:

(1.119)

Вероятность того, что система пуста в момент времени - вероятность того, что в интервале началось обслуживание запроса приоритета

Для доказательства (1.119) применим метод введения дополнительного события. Пусть независимо от работы системы поступает простейший поток катастроф интенсивности s. Каждый запрос назовем «плохим», если во время его обслуживания поступает катастрофа, и «хорошим» - в противном случае. Как следует из утверждений 5 и 6, поток плохих запросов приоритета к и выше является простейшим с интенсивностью

Введем событие A(s,t) - за время t в систему не поступали плохие запросы приоритета к и выше. В силу утверждения 1 вероятность этого события подсчитывается как:

Подсчитаем эту вероятность иначе. Событие A(s,t) является объединением трех несовместных событий

Событие состоит в том, что катастрофы не поступили ни за время t, ни за время При этом, естественно, за время t в систему поступали только хорошие запросы приоритета к и выше. Вероятность события очевидно, равна

Событие состоит в том, что катастрофа поступила в интервале , но в момент поступления система была пуста, а за время не поступило плохих запросов приоритета к и выше.

Вероятность события вычисляется как:

Событие состоит в том, что катастрофа поступила в интервале но в момент ее поступления в системе обслуживался запрос приоритета ниже k, который начал обслуживаться в интервале а за время t - и не поступило плохих запросов приоритета k и выше. Вероятность события определяется следующим образом:

Поскольку событие есть сумма трех несовместных событий, то его вероятность есть сумма вероятностей этих событий. Поэтому

Приравнивая два полученных выражения для вероятности и умножая обе части равенства на после несложных преобразований получаем (1.119)

Очевидно, что для того, чтобы за время ожидания запроса, поступившего в момент t не поступило катастрофы, необходимо и достаточно, чтобы за время не поступило катастроф и запросов приоритета и выше, таких, что за периоды занятости (запросами приоритета и выше), порожденные ими, наступает катастрофа. Из этих рассуждениий и вероятностной трактовки преобразования Лапласа - Стилтьеса получаем формулу, дающую связь преобразований в очевидной форме.

2 - очередь - требования, ожидающие обслуживания.

Очередь оценивается средней длиной г - числом объектов или клиентов, ожи­дающих обслуживания.

3 - обслуживающие аппараты (каналы обслуживания) - совокупность рабочих мест, исполнителей, оборудования, осуществляющих обслуживание требований по определенной технологии.

4 - выходящий поток требований со"(г) - поток требований, прошедших СМО. В общем случае выходящий поток может состоять из требований обслуженных и необслуженных. Пример необслуженных требований: отсутствие нужной детали для автомобиля, находящегося в ремонте.

5 - замыкание (возможное) СМО - состояние системы, при котором входящий поток требований зависит от выходящего.

На автомобильном транспорте после обслуживания требований (ТО, ремонт) автомобиль должен быть технически исправным.

Системы массового обслуживания классифицируются следующим образом.

1. По ограничениям на длину очереди:

СМО с потерями - требование покидает СМО необслуженным, если в момент его поступления все каналы заняты;

СМО без потерь - требование занимает очередь, даже если все каналы заняты;

СМО с ограничениями по длине очереди т или времени ожидания: если су­ществует ограничение на очередь, то вновь поступившее (/?/ + 1)-е требование выбывает из системы необслуженным (например, ограниченная емкость на­копительной площадки перед АЗС).

2. По количеству каналов обслуживания п:

Одноканальные: п = 1;

Многоканальные п ^ 2.

3. По типу обслуживающих каналов:

Однотипные (универсальные);

Разнотипные (специализированные).

4. По порядку обслуживания:

Однофазовые - обслуживание производится на одном аппарате (посту);

Многофазовые - требования последовательно проходит несколько аппаратов обслуживания (например, поточные линии ТО; конвейерная сборка авто­мобиля; линия внешнего ухода: уборка -> мойка -> обсушка -> полировка).

5. По приоритетности обслуживания:

Без приоритета - требования обслуживаются в порядке их поступления на
СМО;



С приоритетом - требования обслуживаются в зависимости от присвоенного
им при поступлении ранга приоритетности (например, заправка автомобилей
скорой помощи на АЗС; первоочередной ремонт на АТП автомобилей,
приносящих наибольшую прибыль на перевозках).

6. По величине входящего потока требований:

С неограниченным входящим потоком;

С ограниченным входящим потоком (например, в случае предварительной за­писи на определенные виды работ и услуг).

7. По структуре С МО:

Замкнутые - входящий поток требований при прочих равных условиях зависит от числа ранее обслуженных требований (комплексное АТП, обслуживающее только свои автомобили (5 на рис. 6.6));

Открытые - входящий поток требований не зависит от числа ранее обслу­женных: АЗС общего пользования, магазин по продаже запасных частей.

8. По взаимосвязи обслуживающих аппаратов:

С взаимопомощью - пропускная способность аппаратов непостоянна и зависит от занятости других аппаратов: бригадное обслуживание нескольких постов СТО; использование "скользящих" рабочих;

Без взаимопомощи - пропускная способность аппарата не зависит от работы других аппаратов СМО.

Применительно к технической эксплуатации автомобилей находят распростра­нение замкнутые и открытые, одно- и многоканальные СМО, с однотипными или специализированными обслуживающими аппаратами, с одно- или многофазовым обслуживанием, без потерь или с ограничением на длину очереди или на время нахождения в ней.

В качестве показателей эффективности работы СМО используют приведен­ные ниже параметры.

Интенсивность обслуживания

Относительная пропускная способность определяет долю обслуженных требований от общего их количества.

Вероятность того, что все посты свободны Р {) , характеризует такое состоя­ние системы, при котором все объекты исправны и не требуют проведения техни­ческих воздействий, т.е. требования отсутствуют.

Вероятность отказа в обслуживании Р огк имеет смысл для СМО с потерями и с ограничением по длине очереди или времени нахождения в ней. Она показывает долю "потерянных" для системы требований.

Вероятность образования очереди Р оц определяет такое состояние системы, при котором все обслуживающие аппараты заняты, и следующее требование "встает" в очередь с числом ожидающих требований г.

Зависимости для определения названных параметров функционирования СМО определяются ее структурой.

Среднее время нахождения в очереди

Из-за случайности входящего потока требований и продолжительности их выполнения всегда имеется какое-то среднее число простаивающих автомобилей. Поэтому требуется так распределить число обслуживающих аппаратов (постов, рабочих мест, исполнителей) по различным подсистемам, чтобы И - min. Этот класс задач имеет дело с дискретным изменением параметров, так как число аппаратов может изменяться только дискретным образом. Поэтому при анализе системы обеспечения работоспособности автомобилей используются методы исследования операций, теории массового обслуживания, линейного, нелинейного и динамического программирования и имитационного моделирования.

Пример. На автотранспортном предприятии имеется один пост диагностирования (п = 1). В данном случае длина очереди практически неограниченна. Определить параметры эффек­тивности работы диагностического поста, если стоимость простоя автомобилей в очереди составляет С\ = 20 р.е. (расчетных единиц) в смену, а стоимость простоя постов С 2 = 15 р.е. Остальные исходные данные те же, что и для предыдущего примера.

Пример. На том же автотранспортном предприятии число постов диагностирования увеличено до двух (п = 2), т.е. создана многоканальная система. Так как для создания второго поста необходимы капиталовложения (площади, оборудование и т.д.), то цена простоя средств обслуживания увеличивается до С2 = 22р.е. Определить параметры эффективности работы системы диагностирования. Остальные исходные данные те же, что для пре­дыдущего примера.

Интенсивность диагностирования и приведенная плотность потока остаются теми же:

=1/λ.
Марковские случайные события описываются обыкновенными дифференциальными уравнениями . Переменными в них служат вероятности состояний р 0 (t), p 1 (t),…,p n (t) .
Для очень больших моментов времени функционирования систем (теоретически при t → ∞) в простейших системах (системы, все потоки в которых – простейшие, а граф – схема гибели и размножения) наблюдается установившийся, или стационарный режим работы. В этом режиме система будет изменять свое состояние, но вероятности этих состояний (финальные вероятности ) р к , к= 1, 2 ,…, n, не зависят от времени и могут рассматриваться как среднее относительное время пребывания системы в соответствующем состоянии.

1. Интенсивность потока обслуживания заявок

2. Коэффициент загрузки СМО

3. Вероятность образования очереди

4. Вероятность отказа системы

5. Пропускная способность

6. Среднее число заявок, находящихся в очереди

7. Среднее число заявок, обслуживаемых СМО

8. Среднее число заявок, находящихся в СМО

9. Среднее время заявки в СМО

10. Среднее время пребывания заявки в очереди

11. Среднее число занятых каналов.

Судить о качестве полученной системы нужно по сов-ти значений показателей. При анализе результатов моделирования важно обращать внимание на интересы клиента и владельца системы. В частности, следует min-ть или max-ть тот или иной показатель.

26. Одноканальная СМО

27. Одноканальная СМО с отказами

28. Многоканальная СМО с ограниченной очередью

Параметры СМО:

o Интенсивность потока заявок.

o Интенсивность потока обслуживания.

o Среднее t обслуживания заявки.

o Кол-во каналов обслуживания.

o Дисциплина обслуживания.

< СМО на примере работы АЗС. Несколько одинак. колонок, произв-ть кот.известна. Если колонки заняты, то обслуживание в очереди м. ждать не > 3х машин одновременно. Очередь считаем общей. Если все места в очереди заняты, то машина получает отказ в обслуживании.

29. Транспортная задача

- широкий круг задач не только транспортного хар-ра, распределение ресурсов, наход-ся у неск. поставщиков, д/другого произвольного числа потребителей. Д/перевозчиков наиболее часто отн-ся к транспорту:

1. Привязка потребителей к ресурсам производителей.

2. Привязка к пунктам назначения пунктов отправления.

3. Взаимопривязка грузопотока прямого и обратного направления.

4. Оптимальное распределение V выпуска промышл. продукции м/у изготов-ми.

< модель привязки к пункту назначения. Известны: пункты отправления и назначения, объемы отправления по к-му пункту, потребность в грузе, стоимость доставки по каждому варианту. Н. оптимальный план перевозок с min транспортными издержками.

30. Тр. задача закрытая - ∑Vотправл. грузов= ∑V потреб-ти в этом грузе, т.е. ∑ai=∑bj (m – число поставщиков, n – число потребителей).

31 . Если это условие невозможно – открытая тр. задача . Тогда ее надо привести к закрытой:

1. Если потребность пунктов назначения превышает запасы пунктов отправления, то вводится фиктивный поставщик с недостающимV отправления.

2. Весь запас поставщиков > потребности, то ввод-сяфикт. потребитель.

32. Алгоритм решения задачи методом потенциалов (этапы):

1. Разработка начального плана (опорного решения).

2. Расчет потенциалов.

3. Проверка плана на оптимальность.

4. Поиск max звена не оптимальности (если п.3 не выполнен)

5. Составление контура перераспределения ресурсов.

6. Определение min эл-та в контуре перераспр-ния и перераспр. ресурсов по контуру.

7. Получение нового плана.

Эта процедура повторяется несколько раз, пока не будет найдено оптимальное решение. Алгоритм остается неизменным.Методы отыскания начального плана:

1. Метод С-З угла

2. Метод min стоимости

3. Метод двойного предпочтения

Метод потенциалов позволяет за конечное число планов найти оптимальный. (Метод Фогеля) Метод потенциалов разработан д/классич. транспорт.задач, но такие встречаются редко, приходится вводить ряд ограничений.

33. В экономике организации встреч-ся норма задач, кот.м.б. сведены к транспортной задаче:

1. Отд. поставки от опред. поставщиков некот. потребителями д.б. исключены из-за отсутствия необх. усл. хранения, перегрузки коммуникаций, и т.д.

2. Организ. необх. опред. min ∑затраты на пр-во и транспортировку продукции. М. оказаться экономич. более выгодным доставлять сырье из более отдал.пунктов, но при <себест-ти. Критерий оптимальности принимает ∑ затрат на пр-во и тран-ку.

3. Ряд трансп. маршрутов имеют ограничения по пропускной спос-ти.

4. Поставки по определ. маршрутам обязательны и обязат. д. войти в оптим. план.

5. Экономическая задача не является транспортной. (Пр. – распределение произв. изделий м/у предприятиями).

6. Необходимость max-ть целевую ф-ю задачи транспортного типа.

7. Необходимость в одно и то же t распределить груз различного рода по потребителям – Многопродуктовая транспортная задача .

8. Доставка грузов в краткий срок. (Метод потенциалов не пригоден, решается с пом. спец. алгоритма).

34. Транспортная задача в сетевой подстановке

Если условие транспортной задачи задано в виде схемы, на кот.изображены поставщики, потребители и связыв. их дороги, указаны величины запасов груза и потребностей в нем и показатели критерия оптимальности (тарифы, расстояния).В вершинах (узлах) сети изображают поставщиков и потребителей. Запасы груза считают положительными, а потребности отрицательными числами. Ребра (дуги) сети – дороги.Решение трансп. задачи в сетевой постановке основано на методе потенциалов и нач-ся с построения начального опорного плана, который должен удовлетворять требованиям:

1. Все запасы должны быть распределены, а потребители удовлетворены.

2. Для каждой вершины должна быть указана поставка груза (+ или -)

3. Общее количество поставок должно быть на 1 меньше числа вершин.

4. Стрелки, которыми обозначают поставки, не д. образовывать замкн. контур.

Затем план проверяют на оптимальность, для чего вычисляют потенциалы. Получают новый план и снова исследуют на оптимальность. Определяют значение целевой функции.

В случае открытой модели вводят фиктивного потребителя или поставщика.

35. Д/решения научных и практических задач в области логистики прим. основные методы:

1. Методы системного анализа

2. Методы теории исследования операции

3. Кибернетические методы

4. Метод прогнозирования

5. Методы экспертных оценок

6. Методы моделирования

36. Наиболее часть в логистике применяется имитац. моделирование, в кот.закономерности, определяющие количественное отношение остаются неизвестными, а сам логистический процесс остается «черным ящиком» или «серым ящиком».

К основным процессам имитац. моделирования отн-ся:

1. Конструирование модели реальной системы.

2. Постановка экспериментов на этой модели.

Цели моделирования:

o Определение поведения логистической системы.

o Выбор стратегии д/обеспеч. наиб.эфф-го функционирования логистич. системы.

Имитац. моделирование целесообразно исполнять, когда вып-ся условия:

1. Не сущ. законченой постановки задач или не разработаны аналитические методы решения сформулиров. матем. модели.

2. Аналитич. модель имеется, но процедуры сложны и трудоемки, сл. имитац. моделирование дает более простой способ решения задачи.

3. Аналитич. решения сущ., но их реализация невозможна из-за недостаточной математической подготовки персонала.

37. Широкое применение в логистике нашли экспертные системы – спец. комп.программы, кот. помогают специалистам принимать решения, связ. с управлением материальным потоком.

Экспертная система позволяет:

1. Принимать быстрые и качественные решения в области управления материальными потоками.

2. подготовить опытных специалистов за отн-но короткий срок.

4. Использовать опыт и знания высококвалифицированных специалистов на различных рабочих местах.

Недостатки экспертной системы:

1. Ограниченные воз-ти использования здравого смысла.

2. Невозм-но учесть все особенности в программе экспертной системы.